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1. Introduction

Recently Witten has conjectured [1], based on an analysis of pure gravity in AdS3, that

a family of extremal self-dual meromorphic bosonic conformal field theories at c = 24k

(with k = 1, 2, . . .) exists. Here extremal means that, up to level k + 1 above the vacuum,

the theory only contains the Virasoro descendants of the vacuum state. A meromorphic

conformal field theory (see [2] for an introduction) is self-dual if its only representation is

the vacuum representation itself. In particular, this implies that the vacuum character has

to be invariant under the S-modular transformation. Taken together, these requirements

then determine the vacuum character of this meromorphic conformal field theory uniquely.

For k = 1 the meromorphic conformal field theory in question is the famous Monster

theory [3, 4] (for a beautiful introduction see [5]). But for k ≥ 2 an explicit realisation of

these theories is so far not known. The proposed conformal field theories satisfy however

a few consistency conditions. First of all, the coefficients of the q-expansion are positive

integers, and thus can be interpreted as vacuum characters of conformal field theories.

Witten also showed that the k = 2 vacuum amplitudes are well-defined on higher genus

Riemann surfaces [1]; more recently, the genus 2 amplitude of the k = 3 theory was shown

to be consistent (by some other methods) [6]. Their method determines also the genus 2

partition functions uniquely up to k ≤ 10.

While these are impressive consistency checks, they essentially only test the modular

properties of vacuum expectation values, and are thus not very sensitive to the inner

workings of the theory. (For example, on the level of the torus amplitudes, one would
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expect that there are infinitely many self-dual conformal field theories at c = 24, since

one may add to J(q) = j(q) − 744 any positive integer. On the other hand, it is believed

that there are only 71 such theories [7].) It would thus be very desirable to subject these

theories to consistency conditions that go beyond these considerations. In this paper we

want to make one small step in this direction by analysing the structure of the modular

differential equation for these theories.

It has long been known that all the characters of a rational conformal field theory

satisfy a common modular differential equation [8, 9]. From a mathematical point of view,

this differential equation can be obtained quite generally for theories that satisfy the so-

called C2 condition [10]; this is believed to be the case for all rational conformal field

theories. For theories satisfying this condition, there exists an integer s for which Ls
−2Ω

plus some correction terms of lower conformal weight lie in a certain subspace Oq(H0) —

for precise definitions see section 2. This then leads to a modular differential equation

of order s. On the other hand, such a relation in Oq(H0) can only exist if Ls
−2Ω ∈ O[2].

In turn this requires that the vacuum representation possesses a null-vector at conformal

weight 2s.

It seems very natural to believe (and we shall show that this is at least true in many

examples) that every modular differential equation arises in this fashion. Thus if the

characters of the chiral algebra satisfy a modular differential equation of order s, this

suggests that Ls
−2Ω ∈ O[2], which in turn implies that the vacuum representation has to

have a null vector at level 2s. Applied to the above candidate theories we find that for

k ≥ 42, this predicts the existence of a null vector at a level less than k + 1. On the other

hand, since the theory up to level k + 1 is just the Virasoro theory at c = 24k, we know

that no such null vector exists. Thus our analysis suggests that at least the theories with

k ≥ 42 are inconsistent.

The paper is organised as follows. In the next section we review the modular differential

equation from the point of view of [10]. In section 3 we explain why we expect the order

of the modular differential equation to be related to the property that Ls
−2Ω ∈ O[2]. We

also check this claim explicitly for a number of theories, in particular, the minimal models,

the su(2) affine theories, su(3) at level k = 1, 2 and the self-dual theories corresponding to

e8 (at level k = 1), e8 ⊕ e8, e8 ⊕ e8 ⊕ e8 as well as the Monster theory. In section 4 we

then apply this technique to the proposed self-dual meromorphic conformal field theories

at c = 24k, and find that the corresponding null vector seems to arise at levels that are

too low (for k ≥ 42).

2. The modular differential equation

Let us begin by reviewing the definition of the C2 criterion of Zhu [10]. We denote the

vacuum representation of the chiral algebra by H0, and the fields of the chiral algebra that

generate H0 from the vacuum state Ω by Si; the conformal weight of Si is hi, where hi

is a positive integer. In the following we shall only consider bosonic bosonic conformal

field theories, although the main ideas will also apply to fermionic theories. We shall also
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assume that the spectrum of L0 is bounded from below by zero, and that there is a unique

vector with L0Ω = 0, the vacuum Ω.

With these preparations we now define the subspace O[2] of H0 (we are using the same

notation as in [11]) as the vector space that is spanned by the vectors of the form

Si
−hi−1φ , where φ ∈ H0 . (2.1)

A chiral algebra (or vertex operator algebra) satisfies the C2-criterion, if O[2] has finite

codimension in H0, i.e. if the quotient space A[2] = H0/O[2] is finite-dimensional. It was

conjectured by Zhu [10] that all rational conformal field theories satisfy the C2 criterion.

This has also been confirmed in numerous cases. Obviously, if the chiral algebra satisfies

the C2-criterion, there exists a positive integer s0 such that

Ls0
−2Ω ∈ O[2] . (2.2)

For the discussion of the characters (or torus amplitudes) a different, but closely re-

lated quotient space is of relevance. To define it, we consider the ring of modular forms

C[E4(q), E6(q)] that is generated by the Eisenstein series E4(q) and E6(q). Recall that a

modular form of weight k is a function f(τ) satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) , (2.3)

where as always q = e2πiτ . We furthermore require that f(τ) has a Taylor series expansion

in non-negative integer powers of q. The Eisenstein series E4 and E6 are modular forms of

weight 4 and 6, respectively, and they freely generate the ring of all modular forms. Our

conventions for the Eisenstein series are

E2(q) = 1 − 24 q − 72 q2 − 96 q3 − 168 q4 − 144 q5 − 288 q6 − · · · ,

E4(q) = 1 + 240 q + 2160 q2 + 6720 q3 + 17520 q4 + 30240 q5 + 60480 q6 + · · · ,

E6(q) = 1 − 504 q − 16632 q2 − 122976 q3 − 532728 q4 − 1575504 q5 − 4058208q6 − · · · .

The Eisenstein series E2(q) is not a modular form since it has a conformal anomaly

E2

(
aτ + b

cτ + d

)
= (cτ + d)2

(
E2(τ) +

6

iπ

c

cτ + d

)
. (2.4)

It will also play an important role in the following.

With these preparations we now consider the ‘module’ H0[E4(q), E6(q)] of the vacuum

representation H0 over C[E4(q), E6(q)]; this consists of linear combinations of vectors in

H0, where the coefficients are polynomials in E4(q) and E6(q). We then define the subspace

Oq(H0) of H0[E4(q), E6(q)] to be generated by the vectors of the form

Si
[−h1−1]φ + 2

∞∑

k=2

(2k − 1) ζ(2k)E2k(q)Si
[2k−hi−1]φ φ ∈ H0 . (2.5)
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Here E2k for k ≥ 4 are the higher Eisenstein series that can be written in terms of poly-

nomials in E4 and E6. The modes S[n] are the natural modes on the torus and can be

expressed in terms of the original modes as (see [10, (4.2.3)] for an explicit formula)

Si
[n] = Si

n +
∑

m≥1

cm,n(hi)S
i
n+m , (2.6)

where cm,n(hi) are constants.

The motivation for the definition of Oq(H0) comes from the fact that if ψ ∈ Oq(H0)

then

TrHj

(
V0(ψ) qL0−

c
24

)
= TrHj

(
V (zL0ψ, z) qL0−

c
24

)
= 0 , (2.7)

where Hj is an arbitrary representation of the chiral conformal field theory and V0(ψ) is

the usual zero mode of ψ,

V (ψ, z) =
∑

n

Vn(ψ) z−n−h , (2.8)

with h the conformal weight of ψ. Put differently, Oq(H0) describes the subspace of

H0[E4(q), E6(q)] whose one-point torus amplitudes vanish (see also [12]).

It is obvious from the above definitions that one can think of Oq(H0) as a ‘deformation’

of O[2]. It is then easy to see (and explained in [10]) that if a chiral conformal field theory

satisfies the C2 criterion, then there exists a positive integer s, such that

(
Ls

[−2] +

s−1∑

r=0

fr(q)L
r
[−2]

)
Ω ∈ Oq(H0) , (2.9)

where each fr(q) is polynomial in E4 and E6.

The smallest such integer s will be called the size of the chiral algebra A. Because

of the grading of H0[E4(q), E6(q)] (in terms of modular weight and conformal weight with

respect to L[0]) one can show that (2.9) implies that (2.2) holds for the same s,1 i.e. that

Ls
−2Ω ∈ O[2]. The converse may in general not be true, although I do not know of any

explicit counterexample.

If we insert the zero mode of the vector (2.9) into the character of an arbitrary rep-

resentation we find that it vanishes, given the definition of Oq(H0). On the other hand,

using standard conformal field theory techniques, Zhu showed [10] that inside the trace, the

zero mode of (2.9) can be expressed in terms of polynomials of L0, involving as coefficients

polynomials in the Eisenstein series E2, E4 and E6. In turn, each L0 can be expressed in

terms of a derivative with respect to q, and one thus obtains a differential equation of the

form2 


(

q
d

dq

)s

+
∑

0≤r<s

f̂r(q)

(
q

d

dq

)r


 χj(q) = 0 , (2.10)

1This will be explained in [13] where a more comprehensive description of the whole approach will be

given.
2It would be very interesting to understand the relation between this differential equation and the one

recently considered in [14].
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where the f̂r(q) are polynomials in the Eisenstein series E2, E4 and E6 (that are indepen-

dent of which character χj is being considered). This equation can be thought of as being

the modular differential equation of [8, 9] (for earlier work see [15, 16]; further develop-

ments are described in [17 – 19]). Using the fact that it has to transform covariantly under

the modular group, it can be brought into the form

[
Ds +

s−2∑

r=0

fr(q)Dr

]
χj(q) = 0 , (2.11)

where each fr(q) is a polynomial in E4(q) and E6(q) of modular weight 2(s − r), and

Dr = cod(2r−2) · · · cod (2)cod (0) . (2.12)

Here cods is the modular covariant derivative that maps a modular form of weight s to one

of weight s + 2,

cod (s) = q
d

dq
− s

12
E2(q) . (2.13)

Note that the modular anomaly of E2(q) is crucial in order for this to be modular covariant.

3. The order of the differential equation

It is believed [8, 9] that the minimal order of the differential equation always agrees with

the number of independent characters, i.e. with the number of irreducible representations

of the chiral algebra, where pairs of conjugate representations (that lead to the same

character) are only counted once. While this is true in many cases (that were checked

in [8, 9]), it cannot be true for self-dual conformal field theories. (Self-dual chiral algebras

are characterised by the property that they only possess one representation, namely the

vacuum representation itself.) Indeed, if this was so, the minimal order of the modular

differential equation for self-dual chiral algebras would have to be one; but then it would

necessarily have to be of the form

q
d

dq
χ = 0 (3.1)

which only has the trivial solution, χ = 1. It therefore follows that the minimal order

of the modular differential equation cannot always agree with the number of independent

characters. In fact, the present argument shows that the minimal order of the modular

differential equation is always at least two.

In the following we want to argue that instead the minimal order of the modular

differential equation always agrees with the size of the chiral algebra, i.e. with the smallest

s for which (2.9) holds. This circumvents the above problem since (2.9) implies that

Ls
−2Ω ∈ O[2], which is only possible for s ≥ 2. To see this we recall that the non-trivial

fields of the theory all have hi ≥ 1. It is therefore impossible to find a null-vector relation

that would make L−2Ω an element of O[2], and hence s = 1 in (2.2) is never possible.

One direction of this proposed correspondence is straightforwardly proven: the argu-

ment of the previous section implies that we can always find a modular differential equation
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at order s if s is the size of the chiral algebra. The above conjecture therefore amounts

to the assertion that also the converse is true, i.e. if all characters of the conformal field

theory satisfy (2.11) for some s, that there exists a relation of the form (2.9) with the same

s. It may be difficult to prove this claim, but a slightly weaker statement, namely that

there is then a relation of the form

(L−2)
s Ω +

∑

j

Sj
−hj+1χj ∈ O[2] (3.2)

should follow from the arguments of Zhu [10] — see the more comprehensive description

in [13]. While this would not prove the above claim in general, it would be sufficient to rule

out the extremal self-dual theories at c = 24k for k ≥ 42, using the arguments of section 4.

For the moment we shall not attempt to prove this, but rather give examples that

suggest the truth of this conjecture. In each case we shall show that the order of the

differential equation is equal to the smallest s0 for which (2.2) holds. In particular, this then

shows that if the theory satisfies a modular differential equation of order s, then Ls
−2Ω ∈

O[2], which is the main conjecture relevant for the analysis of the extremal conformal field

theories at c = 24k. We begin with some simple cases for which the analysis can be done

completely.

3.1 Minimal models

The Virasoro minimal models arise for the central charges c = cp,q with

cp,q = 1 − 6(p − q)2

pq
, (3.3)

where p, q ≥ 2 are coprime integers. They define rational conformal field theories with

(p − 1)(q − 1)/2 inequivalent highest weight representations; the corresponding conformal

weights are given by

h(r,s) =
(rp − qs)2 − (p − q)2

4pq
, (3.4)

where 1 ≤ r ≤ q − 1 and 1 ≤ s ≤ p− 1, and we have the identification hr,s = hq−r,p−s. For

Virasoro minimal models the analysis of [8, 9] applies, and it follows that the order of the

modular differential equation is precisely equal to the number of independent characters,

i.e. to (p − 1)(q − 1)/2.

For Virasoro theories the space A[2] can be taken to be generated by the vectors Ll
−2Ω,

where l = 0, 1, . . .. For c = cp,q the vacuum Verma module has a null-vector at level

(p − 1)(q − 1) for which the coefficient of L
(p−1)(q−1)/2
−2 Ω does not vanish [20]. This implies

that L
(p−1)(q−1)/2
−2 Ω is in fact in O[2] (since it differs from vectors in O[2] by a null-vector),

and thus that the minimal s0 in (2.2) is indeed (p − 1)(q − 1)/2.

3.2 SU(2) WZW models at level k

The next simple class of models for which we can give a complete description are the su(2)

current theories at level k. It is well known that these chiral algebras have k+1 irreducible
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inequivalent representations, namely those characterised by the spin j of the highest weight

space with j = 0, 1
2 , . . . , k

2 . Again the analysis of [8, 9] applies, and it follows that the order

of the modular differential equation is k + 1. This was also worked out explicitly in [8] for

the case k = 1.

On the other hand, the quotient space A[2] for these models was analysed in [21]. For

k = 1 we found

A[2]

(
ŝu(2)1

)
= 10 ⊕ 31 ⊕ 12 , (3.5)

where we have decomposed A[2] in terms of representations of the zero modes of ŝu(2),

and the index indicates at which conformal weight theses states appear. [So for example,

31 refers to the three states Ja
−1Ω, etc.] The state at level two is precisely L−2Ω, which is

therefore not in O[2]. On the other L2
−2Ω = 0 in A[2], and hence the minimal s0 in (2.2) is

s0 = 2 = k + 1, in agreement with the above.

For k = 2 we find instead

A[2]

(
ŝu(2)2

)
= 10 ⊕ 31 ⊕ 12 ⊕ 52 ⊕ 33 ⊕ 14 . (3.6)

The states 12 and 14 correspond to L−2Ω and L2
−2Ω, respectively, and thus only the state

L3
−2Ω ∈ O[2]. Thus the minimal s0 in (2.2) is s0 = 3 = k + 1, as expected. For k = 3 we

find

A[2]

(
ŝu(2)3

)
= 10 ⊕ 31 ⊕ 12 ⊕ 52 ⊕ 33 ⊕ 73 ⊕ 14 ⊕ 54 ⊕ 35 ⊕ 16 . (3.7)

Now the singlet vectors correspond to Ll
−2Ω with l = 0, 1, 2, 3, and hence only L4

−2Ω ∈ O[2],

leading to the minimal s0 = 4 = k + 1, again as expected.

It is not difficult to guess now how the structure will continue for all k: at every k,

A[2](ŝu(2)k) will contain the singlet vectors 12n with n = 0, 1, 2, . . . , k, corresponding to

Ln
−2Ω. Thus only Lk+1

−2 Ω ∈ O[2], leading to the minimal s0 = k + 1.

3.3 SU(3) WZW model at level k = 1, 2

Unfortunately, the analysis of the quotient space A[2] becomes increasingly complicated for

affine algebras of higher rank, and we do not know any general formulae beyond su(2).

However, we can still give the results for low levels, for example for su(3) at k = 1 and

k = 2.

For k = 1 there are three irreducible representations (namely the vacuum representa-

tion, as well as those associated to 3 and 3̄ of su(3)); since the 3 and 3̄ representations

are conjugate representations, they lead to the same character and we thus expect to find

a second order modular differential equation. On the other hand, the A[2] space consists

of [21]

A[2](ŝu(3)1) = 10 ⊕ 81 ⊕ 12 ⊕ 82 ⊕ 13 , (3.8)

and thus Ll
−2Ω with l = 0, 1 is in A[2] — these are the two singlet states at levels 0, 2 —

but L2
−2Ω ∈ O[2], showing that su(3) at level k = 1 has indeed minimal s0 = 2.

At level k = 2, there are six irreducible representations — in addition now also the

6, 6̄ and 8 appear — but two of them are complex conjugates of one another, and hence

– 7 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
7

we expect a fourth order differential equation. On the other hand, the A[2] space consists

of [21]

A[2](ŝu(3)2) = 10 ⊕ 81 ⊕ 12 ⊕ 82 ⊕ 272 ⊕ 13 ⊕ 103 ⊕ 103 ⊕ 83 ⊕ 273

⊕14 ⊕ 2 · 84 ⊕ 274 ⊕ 15 ⊕ 85 ⊕ 16 . (3.9)

This is in agreement with the expectation that L4
−2Ω ∈ O[2], but that no smaller power of

L−2 satisfies this condition.

So far we have discussed rational conformal field theories for which the order of the

modular differential equation coincides precisely with the number of independent charac-

ters, as suggested in [8, 9]. Incidentally, these are also the theories for which Zhu’s algebra

A[1,1] [10] has the same dimension as A[2] [21], see also [22, 23].3 However, one would expect

potential problems with our proposal to arise for those cases where dim A[1,1] < dim A[2].

In particular, this happens for the self-dual theories since they have dimA[1,1] = 1, whereas

dim A[2] ≥ 2 because A[2] always contains at least the vacuum as well as L−2Ω.

3.4 The self-dual e8 level 1 theory

The simplest self-dual conformal field theory (and conjecturally the only self-dual conformal

field theory at c = 8 — see [2, 24]) is the e8 affine theory at k = 1. The vacuum character

of this theory is simply

χe8(q) = j(q)1/3 = q−1/3
(
1 + 248 q + 4124 q2 + 34752 q3 + 213126 q4 + 1057504 q5 + · · ·

)
.

(3.10)

Since it is the only character of this chiral algebra, we can systematically search for the

differential equation of the type (2.11) of smallest order that annihilates χe8(q). One easily

finds that [
D2 − 1

6
E4(q)

]
χe8(q) = 0 . (3.11)

On the other hand, the quotient space A[2] = H0/O[2] for this theory was determined

explicitly in [21], where it was found to consist of the e8 representations

A[2] = 10 ⊕ 2481 ⊕ 38752 ⊕ 12 , (3.12)

and the index denotes again the conformal weight at which these states appear. To obtain

this result we used that the complete null-space of the e8 level k = 1 theory is generated

from the null vectors that lie in the 27000 representation of e8 at conformal weight h =

2. Furthermore, we may take A[2] to be generated by the completely symmetric powers

of the ‘adjoint’ generators Ja
−1 acting on the vacuum, since any commutator term will

automatically lie in O[2]. To determine A[2] we therefore have to determine the intersection

of descendants of the states in the 27000 with symmetrised tensor products of Ja
−1 acting

on the vacuum. This can be analysed per computer (using LiE and a C-program).

3The question of when these dimensions agree or disagree was in fact the motivation for determining the

structure of A[2] for the various examples in [21]. An introduction to Zhu’s algebra can be found in [22, 23].
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The only singlet at level 2 is the state L−2Ω, and since it survives in A[2], it is not in

O[2]; on the other hand, A[2] does not contain any states at level 4, and thus L2
−2Ω ∈ O[2].

Thus it follows that the e8 level k = 1 theory has indeed minimal s0 = 2, in agreement

with the order of the modular differential equation (3.11).

In contrast to the situation discussed in [8, 9], the modular differential equation has

higher order (namely two) than the number of independent characters (which is one here).

One may therefore ask what the other solutions of the modular differential equation corre-

spond to. For the case at hand, there is only one additional solution (in addition to χe8(q)),

which is of the form

χ̂(q) = q
1
2

(
1 +

228

11
q +

34938

187
q2 +

5163352

4301
q3 + · · ·

)
. (3.13)

This does not seem to correspond to a character of any representation; in particular, the

coefficients in the q-expansion do not seem to be integers.4 I suspect that the e8 level

k = 1 theory has a second (independent) modular differential equation at third order

(which comes from the fact that also L3
−2Ω ∈ O[2]), and that only χe8 (but not χ̂(q)) is a

solution to both differential equations. (It is not difficult to find such a third order modular

differential equation, but it is not uniquely determined by this constraint.) I suspect that

the same will also happen for the other self-dual examples that we are about to discuss.

3.5 The self-dual e8 ⊕ e8 theory

The next simplest self-dual conformal field theory is the tensor product of two such theories

at c = 16. The corresponding character is

χe8⊕e8(q) = j(q)2/3 = q−2/3
(
1 + 496 q + 69752 q2 + 2115008 q3 + 34670620 q4 + · · ·

)
.

(3.14)

Again, we can systematically search for the differential equation of the type (2.11) of

smallest order that annihilates χe8⊕e8(q), and we find5 that

[
D3 +

5

9
E6(q)

]
χe8⊕e8(q) = 0 . (3.15)

Thus we expect that this chiral algebra has minimal s0 = 3. If we denote the Virasoro

generators of the two e8 copies by L(1) and L(2), then we know from the previous analysis

that L
(j)
−2Ω 6∈ O[2], but L

(j) 2
−2 Ω ∈ O[2]. Since L = L(1) + L(2), we find that

L−2Ω = L
(1)
−2Ω + L

(2)
−2Ω 6∈ O[2]

L2
−2Ω = L

(1) 2
−2 Ω + L

(2) 2
−2 Ω + 2L

(1)
−2L

(2)
−2Ω 6∈ O[2] (3.16)

L3
−2Ω = L

(1) 3
−2 Ω + 3L

(1) 2
−2 L

(2)
−2Ω + 3L

(1)
−2L

(2) 2
−2 Ω + L

(2) 3
−2 Ω ∈ O[2]

4I have determined them up to order q11, and the denominator continues to contain new prime-factors

as one increases the order of the expansion.
5The two coefficients in front of the two terms E6 and E4D are not uniquely determined by this condition;

we have given the result for the case that the E4D term is absent.
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in agreement with the above expectation. Note that the last term in (3.16) is not in O[2]

since L
(1)
−2L

(2)
−2Ω 6∈ O[2], but that the expression in the third line is in O[2] since L

(j) 2
−2 Ω ∈ O[2].

We are using here that O[2](H1⊕H2) = O[2](H1)⊕O[2](H2), as is obvious from the definition

of the O[2] space.

3.6 The Monster theory

The most interesting self-dual conformal field theory is probably the Monster conformal

field theory constructed by Frenkel, Lepowsky and Meurman [3] (see also [4]). Its partition

function is the well known J(q) = j(q) − 744 function

χM = q−1
(
1 + 196884 q + 21493760 q2 + 864299970 q3 + 20245856256 q4 + · · ·

)
. (3.17)

One again finds that it satisfies a third order modular differential equation which is now

uniquely determined by this constraint to be
[
D3 +

16

31
E6(q) −

290

279
E4(q)D

]
χM (q) = 0 . (3.18)

Thus we again expect the Monster theory to have minimal s0 = 3. This can also be

independently confirmed. As we mentioned before, for any non-trivial theory L−2Ω 6∈ O[2].

Since the Monster theory does not contain any fields with h = 1, O[2] does not contain

any states at level 4 since any such state would have to be of the form S−3φ for some S of

h = 2, and with φ at level one. But since the Monster theory does not contain any states at

level one, no such element of O[2] can exist. At level six, on the other hand, this argument

breaks down. At level six we have singlet states with respect to the Monster group that

arise from Virasoro descendants of the vacuum, namely

L3
−2Ω , L2

−3Ω , L−4 L−2Ω , L−6Ω . (3.19)

In addition we can get three singlet states of the form (see also [25, 26])

∑

ij

cijL−2W
i
−2W

j
−2Ω ,

∑

ij

cijW
i
−3W

j
−3Ω ,

∑

ij

cijW
i
−4W

j
−2Ω (3.20)

where the W i denote the 196883 fields of conformal weight h = 2 that transform in an

irreducible Monster representation, and the cij are the coefficients that pick out the trivial

Monster representation in this tensor product. Finally, we have the singlet state

∑

αβ

dαβŴ α
−3Ŵ

β
−3Ω , (3.21)

where the Ŵ α denote the 21296876 Virasoro primary fields of conformal weight h = 3 that

also transform in an irreducible Monster representation; the constants dαβ are again the

appropriate Clebsch-Gordon coefficients.

Of these eight states, only the first states in (3.19) and (3.20), and the state in (3.21) do

not lie manifestly in O[2]. Now it is known from the decomposition of coefficients in (3.17)

(see for example [27]) that at level 6, there are only as many Monster invariant states as
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there are Virasoro descendants,6 namely four. Thus we must have four linear relations

between these eight states. In fact, it follows from [25] eq. (2.9) that the last state in (3.20)

can be expressed in terms of the states in (3.19), where the coefficient of L3
−2Ω does not

vanish.7 This relation thus allows us to rewrite L3
−2Ω in terms of elements in O[2], proving

that L3
−2Ω ∈ O[2], i.e. that the minimal s0 in (2.2) is s0 = 3 for the Monster theory.

3.7 The other self-dual theories at c = 24

At c = 24 there are a number of other self-dual theories; these include, in particular, the

lattice theories and their orbifolds [30, 31]. (A complete list has been conjectured in [7].)

Their characters differ from that of the Monster by a constant K, χ(q) = J(q) + K.

Provided that K 6= 744, χ(q) also satisfies a third order differential equation of the same

type as (3.18). Unfortunately, we cannot directly calculate the A[2] spaces for these exam-

ples, and we cannot therefore compare this to the minimal value of s0 in (2.2). However,

the case K = 744 is interesting, since this describes precisely the character that occurs for

the e8 ⊕ e8 ⊕ e8 theory,

χe8⊕e8⊕e8(q) = J(q) + 744 = j(q) . (3.22)

In this case, χe8⊕e8⊕e8(q) does not satisfy a third order equation, but only a fourth order

equation. This is in perfect agreement with the fact that only L4
−2Ω ∈ O[2] since

L3
−2Ω = 6L

(1)
−2 L

(2)
−2 L

(3)
−2 Ω + v 6∈ O[2] , v ∈ O[2] , (3.23)

where L
(i)
n , i = 1, 2, 3 are the Virasoro modes of the ith e8 theory. The same argument

implies also that the theory e⊕l
8 has minimal s0 = l + 1. At least for the first few l this

agrees with the order of the corresponding modular differential equation.8

4. Extremal self-dual CFTs at c = 24k

We now want to apply these ideas to the extremal self-dual conformal field theories at

c = 24k that were recently proposed by Witten [1]. As is explained there, the condition

that the theories are extremal and self-dual determines their partition function uniquely.

The assumption of extremality means that the vacuum character is of the form

χk = q−k

(
∞∏

n=2

1

1 − qn
+ O(qk+1)

)
. (4.1)

In terms of the representation space H0 this means that, up to level k, it is generated from

the vacuum by the Virasoro modes. Thus the fields of the chiral algebra contain, apart

from the stress energy tensor with h = 2, only primary fields with hi ≥ k + 1.

6This was already noted in [24, 28, 29].
7I thank the referee for drawing my attention to this reference.
8I thank the referee for drawing my attention to this point.

– 11 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
7

s h(s) p(s) s h(s) p(s) s h(s) p(s) s h(s) p(s)

2 1 1 8 2 9 14 3 23 20 4 43

3 1 2 9 2 11 15 3 26 21 4 47

4 1 3 10 2 13 16 3 29 22 4 51

5 1 4 11 2 15 17 3 32 23 4 55

6 2 6 12 3 18 18 4 36 24 5 60

7 1 7 13 2 20 19 3 39 25 4 64

Table 1: Number of monomials h(s) of E4 and E6 of modular weight 2s, and of free parameters

p(s) for a modular differential equation of order s.

As before for the examples in section 3.4–3.6 we can now determine the lowest order

modular differential equation that annihilates χk. Since the modular differential equation

is covariant with respect to the modular group, we are looking for an equation of the form

[
Ds +

s−2∑

r=0

fr(q)Dr

]
χk(q) = 0 . (4.2)

We want to determine the minimal value of s for which such an equation exists. Let us

denote by h(s) the number of monomials in E4 and E6 that have total modular weight 2s.

The total number of free parameters in a modular differential equation of order s is then

p(s) =

s∑

t=2

h(t) (4.3)

since each fr(q) in (4.2) is a modular form of weight 2(s − r). The first few values of p(s)

(together with the corresponding values of h(s)) are tabulated in table 1. It is easy to see

that asymptotically h(s) ∼ C1 s and p(s) ∼ C2 s2.

Now it is easy to see that if the equation of the form (4.2) annihilates the first k +h(s)

powers of q (starting from q−k up to qh(s)−1), then the equation will hold identically, i.e.

for each power qn. The reason for this is simple: if the differential equation annihilates

the negative powers of q, then the resulting function is a power series in q of modular

weight 2s, and hence must be a polynomial in E4 and E6 (of appropriate degree). It is

then uniquely characterised by the first h(s) coefficients, starting from q0 to qh(s)−1. If all

of these coefficients vanish, the function itself therefore has to vanish identically.

Thus we need to choose the order of differential equation such that the number of free

parameters, p(s) is at least as big as k + h(s), i.e.

p(s) ≥ k + h(s) ⇐⇒ k ≤ p(s − 1) . (4.4)

Now consider k = 42 and s = 21. According to what we said above we need to fix

k + h(s) = 42 + 4 = 46 constants, which is less then p(s) = 47. Thus we expect to have an

order s = 21 modular differential equation annihilating χ42, and we have checked explicitly,
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k s k s k s k s

42 21 44 22 46 22 48 23

43 21 45 22 47 22 49 23

Table 2: The minimal order s of the differential equation for the extremal self-dual theories at

c = 24k.

using Maple, that this is indeed the case.9 Such a differential equation should imply that

Φ = L21
−2Ω ∈ O[2] . (4.5)

On the other hand, Φ appears at level 42 above the vacuum, but for k = 42 the proposed

conformal field theory only contains Virasoro descendants at this level. (The additional

generators of the proposed conformal field theory only appear at levels greater or equal than

k+1 = 43.) Since c > 1 there is no null-vector relation between these Virasoro descendants,

and thus (4.5) is impossible. Thus either our claim regarding the correspondence between

the modular differential equation and the structure of A[2] breaks down at this stage, or

there is a contradiction.

Since p(s) grows quadratically, it is clear that for all values of k ≥ 42 we obtain such a

problem. (Strictly speaking, we are assuming here, that the partition function is sufficiently

generic so that we can actually find a modular differential equation of this order. Given

that we could find such a differential equation for k = 42, it seems very plausible that this

will also be the case for k ≥ 43.) For the first few k ≥ 42 the order of the minimal modular

differential equation is summarised in table 2.

This analysis therefore suggests that at least the theories with k ≥ 42 are inconsistent.

On the other hand, by considering higher genus amplitudes, [1, 6] found impressive evidence

that the theories with k = 2 and k = 3 may indeed be consistent. The explicit genus two

analysis of [6] can also be generalised to k ≥ 3, but it stops being a real consistency check

at k = 11, and thus their result is not in any contradiction with the above suggestions.

If these conclusions are correct, it would probably mean that one has to adjust the

chiral conformal field theory of the AdS3 description, and add some (few) states at lower

conformal weight. The conformal weight at which these additional states appear is of order√
k for large k; their conformal dimension therefore goes to infinity in the large k limit, and

the existence of these states does not lead to a contradiction with the semiclassical AdS3

description.10 The additional states probably also do not have any effect on the leading

order entropy calculation of [1]. It would be very interesting to find a ‘minimal’ proposal

for a consistent chiral conformal field theory satisfying these constraints.

That something of this nature is necessary is maybe not too surprising in view of the

superconformal analysis of [1]: there it was shown that the consistency of the R-sector

requires that one has to add NS-sector states at conformal weight zero (corresponding to

q0) at least for k∗ ≥ 8 (with k∗ even). If the above analysis is correct, it would seem that

9I thank Marco Baumgartl for helping me do this calculation.
10I thank Edward Witten for pointing this out to me.
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something similar (albeit slightly more dramatic) is required in order to make the bosonic

conformal field theories consistent.
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